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A higher-order difference solution method is presented for viscous flow around an 
oscillating body. The NavierrStokes equation in a rotational form, which conserves both 
momentum and kinetic energy, is approximated into a difference form by a fourth-order com- 
pact differencing in a general boundary-fitted curvilinear coordinate system. A time-marching 
procedure is derived and the high resolution property is demonstrated with the computations 
of some simple problems. The simulation of a viscous flow around a circular cylinder 
sinusoidally oscillating at low Keulegancarpenter number elucidates fairly well the sequen- 
tial viscous flow mechanism of boundary layer development, flow separation, and vortex 
shedding with pairing. 1’ 1987 Academic Press. Inc 
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1. INTRODUCTION 

Unsteady vertical flow around a circular cylinder has long been of interest both 
experimentally and theoretically. It contains a lot of very nonlinear mechanics such 
as flow separation, vortex shedding, and turbulence. Continuous efforts have been 
devoted for the thorough understanding of the nonlinear flow mechanics around a 
circular cylinder and it is going to be noted that numerical experiments will be 
useful for this purpose. In the field of ocean engineering, in particular, vortex 
shedding from a circular cylinder in an oscillatory flow is of significant importance. 
Ocean waves generate oscillatory flows around a member of an offshore structure 
or a vertical riser pipe, and they induce in-line and transverse forces due to unsym- 
metric vortex shedding. Resonant oscillations caused by these forces may destroy 
riser pipes of an oil production system in ocean. 

The in-line and, transverse forces are generated by complicated vortex shedding 
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motions and depend on both Reynolds number Re = V,,,d/v and Keulegan-Carpen- 
ter number Kc= V,T/d, where V,,, is amplitude of oscillatory flow velocity, a’ 
diameter of a circular cylinder, v kinematic viscosity, and T period of oscillation. 
The estimation of these forces has been mostly based on empirical equations 
derived from laboratory experiments of force measurement [14]. The detailed 
mechanism of generating these forces is not well elucidated, since the vortex 
motions are quite complicated and they show a variety of pairing patterns at 
different Kc numbers as observed, for example, by Williamson [ 193. 

A lot of numerical studies have been focused on the problem of vortex shedding 
from an impulsively started circular cylinder. Most successful examples seem to be 
those by Lot [S] and Badr and Dennis [l], in which vorticity-streamfunction 
equations are numerically solved with particular techniques. However, these 
approaches seem to find difficulties in extending to three-dimensional cases with 
obstacles of arbitrary three-dimensional configuration and to higher Reynolds 
number cases by incorporating subgrid-scale turbulence model. 

In this study the NavierStokes (NS) equations are directly integrated with 
primitive variables, basically following the algorithm presented by Harlow and 
Welch [4]. The NS-equations are deformed into conservative forms, in which both 
momentum and kinetic energy are conserved. Since low-order truncation error con- 
taminates the solution, adequate higher-order differencing scheme must be 
employed, which is essentially important for a viscous flow problem. One of the 
most favorable schemes is the compact finite differencing by Hirsh [S], which 
achieves high-order discretizations of differential equations without an enlargement 
of the band width of the resulting set of discrete equations. 

In recent years successful simulation of ship waves were undertaken using an 
inflexible rectangular mesh system [ 1 l] and the averaged wave breaking motion 
was also simulated with this simplest coordinates [12]. However, since we must 
solve the flow field bounded by boundaries of arbitrary configuration, the use of a 
boundary-fitted coordinate system is necessary. It is of fundamental importance for 
the simulation of vortex generation on the body surface. Among a number of 
methods [ 171 the method based on the solution of an elliptic differential system is 
advantageous since a fairly smooth grid system which is easily adjustable is 
obtained. 

In Section 2 the method of generating a boundary-titted coordinate system is 
described. The derivation of the NS-equations in conservative form is explained in 
Section 3. The computational procedure and boundary conditions are described in 
Sections 4 and 5, respectively. The space differencing scheme is briefly described in 
Section 6. Some numerical tests to ensure the degree of accuracy of the present 
method are performed in Section 7 including computation of a flow around an 
impulsively started circular cylinder in a uniform flow. Simulations of vortex 
shedding in an oscillatory flow at Kc = 5 and 7 are presented and discussed in 
Section 8. Brief concluding remarks are mentioned in Section 9. 
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2. GENERATION OF BOUNDARY-FITTED COORDINATE SYSTEM 

A boundary-titted coordinate system has coordinate surfaces coincident with all 
boundaries of arbitrary configuration, which is not necessarily orthogonal but 
general curvilinear. General curvilinear coordinates [’ in a Euclidean space may be 
defined as the differentiable functions of the Cartesian coordinates x’, 

<’ = (‘(x’, 2, x’), i = I, 2, 3. 

The transformation of coordinates (2.1) can always be inverted to 

x’ = xyg’, (‘, [‘), i= 1, 2, 3, 

provided that the transformation matrix 

(2.1) 

(2.2) 

(2.3) 

is non singular, which means that the Jacobian 

J = det( 7) (2.4) 

exists and does not vanish. Let E be a physical region in x’x’x’-space bounded 
by arbitrary-shaped boundaries IJE and R be a rectangular transformed region 
in ~1~2~3-space. Grid generation and subsequent computations are made in the 
transformed region R, hence the metric tensor g,, is given by 

g,, = Tf; T; 6,,, 

g = Wg,,), 
gv = tg ~ 1 elnljle jP4g,np g ny ) 

(2.5) 

(2.6) 

(2.7) 

where 6 and e denote the Kronecker delta and the Eddington permutation symbol, 
respectively. 

The problem of grid generation is to find the smooth functions of Eq. (2.2) in R 
when the shape of the boundaries 817 is given by Cartesian coordinates. The method 
to let the coordinates be solutions of an elliptic partial differential system can con- 
veniently control the coordinate spacing [ 161 and can cope with a time-dependent 
coordinate system, the use of which is requested by the free surface problems [IS]. 
Furthermore it can be generalized to three dimensions [9]. The governing equation 
in the transformed region R for the boundary-fitted coordinate system is 

where 

I) = A’ sgn( p - 5’) exp( - B’ 1 p ~ 5’1) (2.9) 
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FIG. 1. Field transformation, left; physical region, right; transformed region 

plays the role of attracting the coordinate surfaces of t’= const. to a specified coor- 
dinate surface 5’ = 5’. 

Appropriate boundary conditions are given to Eq. (2.8) by geometric con- 
figuration of the problem and the pattern of transformation. For our present 
problem of a flow around a vertical cylinder the transformation pattern shown in 
Fig. 1 is chosen.A doubly connected region E about a circular cylinder is trans- 
formed to a rectangular region R, with the boundaries dE, of the physical region E 
corresponding to dR, of the transformed region R for i = 1, 2,..., 6, respectively. On 
the boundaries (3R, and dR, which correspond to the re-entrant boundaries dE, 
and ?E,, respectively, the periodic conditions are imposed on any functions in R. 
Dirichlet and Neumann conditions are used on the other boundaries as follows. 

.x' = ,f', ,y2 = 22, ax3 
aic’=O on C7R,,(?R3, 

ax’ o a.2 -= -= 
x3 ’ a[’ 0, .y3 = ,f3 on dR,, i?R,. 

(2.10) 

The second-order centered difference scheme is used to approximate the spatial 
derivatives in Eqs. (2.3) and (2.8). A quasilinear elliptic differential system (2.8) is 
solved by a successive relaxation method. 

3. GOVERNING EQUATIONS 

Governing equations are written in the general curvilinear coordinates (5’ t2, t3), 
since a boundary-fitted coordinate system is employed. Now consider that a cir- 
cular cylinder oscillates in a viscous incompressible fluid at right angle to its axis, 
namely in the direction parallel to the xl-axis (see Fig. 1). Instantaneous velocity of 
oscillation is given by 

V=V,sin $* , 
( 1 

(3.1) 
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FIG. 2. Definition sketch for the extrapolation on body boundary. 

where V,, is amplitude of oscillatory velocity, T period of oscillation and t time. 
The NS-equation for the sinusoidal flow is written as 

KC 
, ad at+ (u’u’);,= - g”P,,+ Re ‘g’xul,k -2nKc ’ cos (27~) g”T,‘, (3.2) 

u;, = 0. (3.3) 

Here all the variables are made dimensionless with reference to diameter of the cir- 
cular cylinder d, by amplitude of the oscillatory velocity V,,, and by period of 
oscillation T. Dimensionless parameters are Reynolds number Re = V,,, d/r and 
KeuleganCarpenter number Kc = V, T/d. Primitive variables are contravariant 
components ui of the flow velocity vector relative to the circular cylinder and 
pressure P. A subscript with (;) denotes covariant derivative. The last term in the 
momentum equation (3.2) represents the oscillatory acceleration in the X’ direction, 
in which T; is the transformation matrix defined by Eq. (2.3). 

The momentum equation (3.2) is very complicated since some undifferentiated 
terms arise from the covariant derivatives of a vector or a tensor. For example the 
advective term is rewritten as 

(; 
(u’u’);, =z (l&4’) + f:,U’Uk + ryk U’Uk, 

“4 

where rjk is the second kind of Christoffel symbol. These additional undifferentiated 
terms increase the number of operations in the numerical calculation and may 
introduce pseudophysical errors into the computation. Warsi introduced com- 
pressible NS-equation that does not contain undifferentiated terms [18]. However, 
his equation does not seem to be suitable for the numerical computation of incom- 
pressible flows, since the explicit expression of stress terms is not provided. 
Therefore, the NS-equation must be in a compact form appropriate for the 
numerical computation of a viscous incompressible flow. 

For this purpose, we use the NS-equation in the rotational form, in which the 
advective term is expressed by the kinetic energy gradient and the outer product of 
velocity and rotation, and the viscous stress terms by the rotation of vorticity. Since 
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the gradient of a scalar, the divergence of a contravariant vector and the rotation of 
a covariant vector can be written in the compact form as 

au 
a:i=@' 

auk &“kUk; i = E’lk ayl. 

(3.5) 

(3.6) 

(3.7) 

The NS-equation in the rotational form becomes 

pg= _ a4 
at 

g” r’ + g”&jk,Ukd 

a 
- Re ’ Eqk @k/d) 

- 27tKc ’ cos(2nt) gv;, (3.8) 

g 
~ 112 

& (g”V) = 0. 

Here 4 is Bernoulli scalar defined by 

f#l = P + ~g,,uV, (3.10) 

and o’ is a contravariant vector of vorticity as 

The symbols ~~~~ and &;jk in Eqs. (3.7) (3.8) and (3.11) are third-order tensors and 
refer to Eddington permutation symbol e as 

cilk = g’12ellk, cifk = g li2eilk. (3.12) 

Equations (3.8) and (3.9) are the governing equations in the general curvilinear 
coordinates, and they are appropriate to the three-dimensional direct simulation in 
a boundary-fitted coordinate system since they do not include any additional undif- 
ferentiated terms. 

Furthermore the rotational form of the NS-equation has another advantage of 
having the conservative property for kinetic energy as well as momentum [lo]. In 
the viscous incompressible fluid the kinetic energy is dissipated by the viscous 
stresses unless it is supplied from outside. In the absence of time-differencing errors 
this process of energy dissipation can be simulated even if the symmetric difference 
schemes are used to approximate spatial derivatives. 
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4. COMPUTATIONAL PROCEDURE 

Using forward difference in time, the momentum equation (3.8) is rewritten as 

(4.1) 

where 

2nKc ’ cos(27rrt) ,g”T/!. (4.2) 

Here the superscript (n + 1) denotes the (n + 1 )th time level and (n) is dropped for 
simplicity. To determine the velocity vector u’ at the (n + 1 )th time-step and Ber- 
noulli scalar 4, a contravariant vector a’ is decomposed into the solenoidal and 
irrotational vector fields as Eq. (4.1). The flow velocity vector ui at the nth time-step 
is retained in the vector ai of Eq. (4.2), since the incompressibility constraint is 
imposed at every time step to prevent the velocity field at the (n + 1)th time-step 
from systematically accumulating numerical errors [4]. 

This procedure of Helmholz decomposition provides the fundamental algorithm 
used in the MAC-type simulation of incompressible flows [ 131. By taking the 
divergence of Eq. (4.1) and letting the divergence at the (n + 1 )th time-step zero 
through Eq. (3.9) we have a Poisson equation for the Bernoulli scalar 

where 

/J=$ (g”*a’). 

(4.3) 

(4.4) 

Equation (4.3) is solved by a successive relaxation method under boundary con- 
ditions and the irrotational field of the second term of Eq. (4.1) is calculated from 
the solution of d. Then the solenoidal velocity field at the (n + 1 )th time step is 
renewed by Eq. (4.1). 

5. BOUNDARY AND TNITIAL CONDITIONS 

The computational domain is surrounded by body boundary, open boundaries at 
a distance and upper and lower boundaries, on which proper treatments are 
necessary. 
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On the body boundary a no-slip condition is imposed as 

u’=O. (5.1) 

Substituting Eq. (5.1) into the NS-equation (4.1), the equation for the Bernoulli 
scalar quantity 4 is derived as 

(5.2) 

Since (5.2) is a vector equation, this gives too many conditions for the scalar 4 to 
be determined by the Poisson equation (4.3) [13]. Therefore, only one component 
of them which is approximately normal to the body surface <’ = const. is taken as 

Since it is assumed that the disturbance from the circular cylinder does not reach 
the surrounding open boundaries in the present oscillatory flow problem owing 
to the use of an adequately large domain of computation, the following infinity 
condition is used on the open boundaries far away from the circular cylinder. 

q5 = P, $ ~g,,u”Li’. 

A periodic condition is used on the upper and lower horizontal boundaries. Since 
the minimum number of grid point is used in the direction parallel to the axis of the 
cylinder, the simulation is quite two-dimensional in the present computations, 
although the formulation and the computer code are fully three-dimensional. 
However, this seems to be appropriate for low Reynolds number flows (Re < 1000) 
considered in the present study. 

The initial condition for the velocity which satisfies the incompressibility 
constraint is given by the stationary state 

ui= 0 at t = 0. (5.5) 

6. SPACE DIFFERENCING 

The degree of accuracy of the difference approximation must be raised so that the 
truncation error does not contaminate the solution. In viscous flow problems, in 
particular, numerical dissipation must be carefully diminished. The truncation error 
of the nth order difference scheme for the mth derivative is expressed as 
d”d” + In/,(” + M, There are two ways to reduce this error and raise the spatial 
resolution. One is to increase n, namely, to use a higher-order scheme, and the 
other is to reduce grid spacing in the region where flow variables have large 
gradient. 
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In this study a relatively line spacing is generated near the body by attracting the 
grid system and a fourth-order accurate compact difference scheme [S, 131 is used 
for the space derivatives in the calculations of vorticity in Eq. (3.11) viscous stress 
terms in Eq. (4.2) source terms of Eq. (4.4) and gradient of 4 in Eq. (4.1). In the 
solution procedure for the pressure field by Eq. (4.3) a second-order centered dif- 
ferencing is used for the sake of computational economy. The compact differencing 
is advantageous in that it can be applied without an enlargement of the band width 
of the resulting set of discrete equation. Some other higher-order differencings 
necessitate larger numbers of points for space differencing, which makes the boun- 
dary conditions complicated. It is noted that a higher-order differencing is often 
susceptible to intrinsic instability. Christie [2] proposed an upwind compact dif- 
ference scheme to add a favorable stabilizing property to the compact difference 
scheme of Hirsh [S]. However, it seems to be almost impossible for his scheme to 
maintain the fourth-order accuracy, since the contribution of the first-order upwind 
differencing may degrade the accuracy in actual cases. Therefore, the differencing 
method by Hirsh [S ] is used here, carefully considering the stability property with 
Courant and diffusion numbers as parameters. 

The compact difference scheme D is written as 

D=8/(1 +A2hD/6), (6.1) 

where 8, D, and D denote centered, forward, and backward difference operators, 
respectively. Now let I be the operator such that 

Ilf(x) = .f(x + nA )> (6.2) 

then, the difference operators are 

b=(Z-Z ‘)/2A, (6.3) 

h= (I- 1)/A, (6.4) 

D=(l -Z)/A, (6.5) 

DD=(Z-2+Z~ ‘)/A2. (6.6) 

Hence D,j ( =,f’) becomes 

(6.7) 

The differential coefficient f’ is simultaneously calculated along a coordinate line by 
the numerical solution of the tridiagonal linear system. However, for the com- 
putational efticiency the initial value off’ is predicted by the centered differencing 
(6.3) as 

.f ;o, = hi (6.8) 
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and then an iterative calculation is made to raise the accuracy up to the fourth 
order through the following equations derived from Eq. (6.7). 

.f’;,,, + I) = .f;m, + As (6.9) 

The relaxation factor As is set at 0.6. 
On the boundaries, except for those on which a periodic condition is applied, 

forward, or backward differencing is used due to the lack of velocity points outside 
the boundaries. 

In the iterative solution procedure of the Poisson equation (4.3) for C$ the space 
differencing is approximated by centered differencing as 

Similarly the body boundary condition (5.3) becomes 

8, $4 = gi, a’. (6.11) 

For the solution of (6.11) 4 is extrapolated outward from the interior value 4,) by 
the following equation, see Fig. 2. 

#- I=41 -2giiU’A. (6.12) 

7. NUMERICAL TESTS 

7.1. Condition qf Computation 

The accuracy of the present method is examined by the solution of a uniform 
flow problem and the effectiveness of the compact difference scheme is 
demonstrated by the solution of an oscillatory flow problem. 

All the variables are made dimensionless in all the computations in this paper; 
length with respect to the unit length of the diameter of the circular cylinder d, 
velocity with respect to the amplitude of the oscillatory flow velocity or the steady 
flow velocity V,,, and time with respect to d/V,x in the uniform flow case or the 
period of oscillation T in the oscillatory flow case. Therefore, pressure and vorticity 
are made dimensionless with respect to 1/2pv2, and V,Jd, although pressure in the 
formulations is made dimensionless with respect to pVL. In the case of oscillatory 
flow the cylinder is moved with the grid system fixed to it at the speed of Eq. (3.1). 
However, the flow velocities are shown with values in the coordinate system fixed 
to the cylinder for convenience in the figures and their captions in this paper, 
assuming that the cylinder is fixed and the fluid travels right and left around it. 
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FK. 3. Coarser grid system 

The coarser grid system shown in Fig. 3 is used for the numerical tests. The 
number of grid point is 78 x 76 x 3 in radial, circumferential and axial directions, 
respectively. To raise the resolution in the proximity of the circular cylinder the 
coordinate surfaces are attracted onto the body surface with the factors A = 10000 
and B = 0.5. The smallest space difference in the radial direction is about 0.5 percent 
of the diameter of the cylinder. 

From the Courant condition for stability the following limitation on the time 
increment is derived, 

Here U’ is the radial velocity and dx’ is the smallest radial spacing. If we assume 
the velocity is unity on the body surface where d.u’ is 0.005, At must be smaller 
than 0.005, since Kc is unity in the uniform flow problem. 

In the computed results the velocity and vorticity components are evaluated in 
the Cartesian coordinates. 

7.2. Circular Cylinder in a Unijbrm Flm 

A circular cylinder is accelerated from at rest to the unit steady speed for unit 
period at Re = 1000. Since the time increment is set at 0.001 and the computation is 
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FIG. 4. Finer grid system 

continued for 3000 time-steps; the steady speed is reached at t = 1 and the 
computation is stopped at t = 3. 

The computed velocity vector field in the vicinity of the circular cylinder at t = 3 
is shown in Fig. 6. It is obviously noted that a secondary twin vortex is simulated 
near the separation point in front of the large twin vortex. This result seems to 
demonstrate the high resolution property of the present method, since the secon- 
dary twin vortex is a vortex of small strength that appears at the Reynolds number 
greater than 550 and plays an important role in the separation mechanism [6, 8-J. 

I 
0 COARSE GRID 1000 2000 3000 4000 
I I 
0 FiNE GRID 2000 4000 6000 8000 

FIG. 5. Oscillation of flow velocity 
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FK;. 6. Velocity vector field of a secondary twm vortex on a circular cylinder advancing steadily, 
Re = 1000. 

The distribution of vorticity Q’ on the cylinder surface is compared with the 
computation by Lot [S] in Fig. 7. It is noted that the overall agreement is good 
but that discrepancy still remains. This discrepancy is supposed to be due to the dif- 
ference of the method of accelerating the cylinder, which determines the vorticity 
development. Pressure distribution at the same moment with Fig. 6 is compared 
with the computation at Re = 100, the computation at Re = 2000 by Kawamura 
and Kuwahara [7] and the measurement at Re = 2800 by Goldstein [3] in Fig. 8. 
Although some discrepancy is noted between computation and measurement, the 
degree of accuracy of the present method is supposed to be appropriate, considering 
that there are some differences in the Reynolds number and in the selected time 
level. 

FIG. 7. Distribution of vorticity wz on a circular cylinder advancing steadily at Re = 1000, I = 2, (k); 
present method (---); computation by Lot [8]. 
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FIG. 8. Pressure distribution on a circular cylinder advancing steadily, (-); present method at 
Re= 1000, (-); dq at Re= 100, U; measured at Re=2800, from Goldstein [3], (---); computed by 
Kawamura and Kuwahara at Re = 2000 [7]. 

7.3. Circular Cylinder in an Oscillatory Flow 

Two velocity vector fields, by compact differencing and centered differencing, are 
compared in Fig. 9 at the 2250th time-step of the flow simulation at Kc= 5 and 
Re = 1000, at which the gradually accelerating flow is incoming from right after the 
cylinder undergoes vortex shedding first to the left side and second to the right. 

It is obviously noted that the vertical flows, on the right-hand side, above the 
cylinder and at the separating point on the body surface, are more clearly realized 
by the compact differencing method. Furthermore, the unrealistic velocity fluc- 
tuation near the body surface is removed by this higher-order accurate scheme. The 
pressure distribution at the same instance with Fig. 9 is compared in Fig. 10. The 
difference is noticeable and unrealistic fluctuation seems to be removed by the 
higher resolution property of the compact difference scheme. 

It may be concluded that the truncation error of the centered differencing scheme 
contaminates the solution of this problem in a coarser grid system but that the 
compact difference scheme can resolve this problem with its higher-order accurate 
property. 

8. SIMULATED VORTEX GENERATION IN AN OSCILLATORY FLOW 

8.1. Condition of Computation 

The motions of vortices around a circular cylinder in relative sinusoidal flow are 
very complicated and the pattern of vortex shedding varies depending on the Kc 
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FIG. 9. Comparison of velocity vector field at N = 2250 (/ = 1.125) of the case of Kc = 5 simulated in 
the coarser grid system, compact differencing (above) and centered differencing (below). 

number. The pairing process of vortices from the previous half cycle with those in 
the present half cycle is fundamental in this oscillatory flow problem. According to 
Williamson [ 19 J pairing of attached vortices is observed in the range of Kc < 7 as 
illustrated in Fig. 11. A pair of small attached vortices form in the wake of the cylin- 
der in each half cycle and when the cylinder reverses direction they split up and pair 
with new vortices being finally convected away. 

Two Kc numbers 5 and 7 are chosen in this section for the simulation to 
numerically elucidate this complicated vortex generation, shedding and pairing. The 
finer grid system shown in Fig. 4 is used in the computations. The number of grid 
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FIG. IO. Comparison of pressure distribution on the circular cylinder in the condition of Fig. 8, (-): 
compact differencing, (---); centered differencing. 

points is I 18 x 117 x 3 in radial, circumferential and axial directions, respectively. 
Since the coordinate surfaces are attracted toward the cylinder with factors A = lo5 
and B = 0.6, the smallest spacing in the radial direction is 0.15 percent of the 
diameter of the cylinder. Since the amplitude of oscillation of the cylinder is 
Kc. ~//2rr, the shedded vortices are not expected to go across the open boundary of 
the computational domain. 

From the stability requirement with respect to the Courant number the time 
increment must satisfy the following condition, when we assume that the radial 
velocity is unity on the cylinder surface 

0.0015 
At<- 

Kc (8.1) 

The dimensionless time increment is set at 0.00025 for the both cases of Kc = 5 and 
7. Therefore 4000 time-steps are required for one cycle of flow oscillation. The 
computation is continued for about 7000 time-steps. 

FIG I I. Sketch of observed pairing of attached vortices for Kc<4, arrows refer to the flow 
direction. 

58 l/69/2-8 
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ln the present problem of vortex shedding the solution often starts to show fluc- 
tuations in the region of shed vortices apart from the cylinder, where the grid 
system is relatively coarser. This determines the uppermost value of Reynolds num- 
ber. It is 1000 for the case of Kc = 5, but it is reduced to 700 for the case of Kc = 7, 
since the vortices are shed farther away from the cylinder with the increasing Kc 
number. 

8.2. Kc = 5 

Velocity vector fields, contour maps of in-line velocity u’, transverse velocity u’, 
pressure P and vorticity with the axis parallel to the axis of the cylinder w3 are 
shown in Figs. 12-16, respectively. Figures 12, 15, and 16 contain 6 frames from 
N =4000 to 6500 with the interval of 500 time-steps. The first cycle of flow 
oscillation is ceased and a new flow from right starts to come in at N = 4000, when 
the cylinder is just started to move to the right. The former half of the second cycle 
is ceased at N = 6000 as shown in Fig. 5. In the contours of velocities U’ is taken to 
be positive when it is directed to the right and U’ when it is directed upward. 

The boundary layer on the cylinder seems to be resolved by the present grid 
system and very complicated distortion of fluid flow on the top (90”) of the cylinder 
is noticeable. This is presumably due to the pairing with the vortex of opposite sign 
that is generated in the previous half cycle. Since these velocity vector fields are 
shown in a reference frame fixed to the cylinder, contrary to the flow visualization 
by Williamson [19], the vortices surrounding and affecting on the flow along the 
surface of the cylinder are not clearly observed. However, the contour maps are 
effective for the visualization of the complicated mechanism of vortex shedding and 
for the quantitative understanding of the physical values. 

The contours of in-line velocity u ’ in Fig. 13 show that a complicated velocity 
field is present at V = 0.0 (N = 4000) owing to the vortex shedding of the previous 
cycle. At the next stage of N = 4500 the contours are remarkably distorted with the 
contour of highest value being split up. The maximum value of U’ is 2.6 times larger 
than the flow velocity at infinity at the moment when the flow velocity is maximum 
at N = 5000. 

At N = 4000 in the contour map of the transverse velocity u2 in Fig. 14, when the 
velocity of the oscillation is zero, U* takes very high value 1 ‘2. The twin vortices 
generated in the previous half cycle cause very high transverse velocity near the 
cylinder surface and this seems to accelerate the flow separation. The U* field at 
N = 6500 is not completely asymmetric to that of N = 4500 presumably due to the 
difference of the repeated number of cycle. 

The contour map of pressure P, which has the same magnitude with pressure 
coefficient, is shown in Fig. 15. The lowest pressure contour of -4 is observed at 
N = 4500 when the flow distortion causes remarkable separation. 

The contour maps of vorticity (1~~ are shown in Fig. 16 and more detailed ones 
are also shown in Fig. 17 with the smaller interval of 250 steps. These figures are 
most suitable for the understanding of the mechanism of vortex shedding. At the 
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FIG. 12. Velocity vector field for the case of KC = 5 and Re = 1000, (a) N= 4000, t =. 1.000, V= 0.00; 
b) N=4500. I= 1.125, Y= -0.71. 
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FIG. 12 (conhzucd). (c) N=5000. I= 1.250. V= - 1.00; (d) N=5500. /= 1.375. I’- -0.71. 
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FIG. 12 (continued). (e) N=6000, l= 1.500, V=O.OO; (f) N=6500, t= 1.625, v=0.71. 
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Fiti. 13. Contour map of velocity U’ for the case of fG = 5 and Re = 1000, the contour interval is 0.2 
and contours of positive values are drawn in bold lines, N = 4000, I = 1.000, V = 0.00 

I ’ 

FIG. 14. Contour map of velocity U* for the case of Kc = 5 and Re = 1000, the contour interval is 0.2 
and contours of positive values are drawn in bold lines, N = 4000, t = 1.000, V = 0.00. 
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FIG. 15. Contour map of pressure P for the case of Kc = 5 and Re = 1000, the contour interval is 0.2 
and contours of positive values are drawn in bold lines, (a) N = 4000, I = 1.000, V= 0.00; (b) N = 4500, 
I= 1.125. v= -0.71. 
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FIG. I5 (mntinued). (c) N=5000, I= 1.250, V= - 1.00; (d) N= 5500, I = 1.375, I;= -0.71 
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FIG. 15 (conrinu~d). (e) N=6000, l= 1.500, V=O.OO; (f) N=6500, I= 1.625, V=O.71 
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moment of N = 4000 when the cylinder just starts to move to the right, the upper 
surface of the cylinder is already covered with vorticity of anticlockwise rotation 
owing to the vortex motion of the previous half cycle. This vorticity layer starts to 
be split up and separated at the point around 120” at N = 4250. Then, this 
separating motion leads to shedding of vortices at N = 4750 when the oscillation 
speed approaches close to the maximum value and at this moment vorticity layer of 
opposite sign appears on the left hand surface of the cylinder. The pairing of the 
vortex generated in this half cycle with one generated in the previous half cycle is 
very interesting. The new vortex is separated into two; one is attached to the cylin- 
der and the other is shedded to the left together with the vortex of the previous half 
cycle. Pairing of attached vortices and that of shed vortices are both present, which 
seems to be a particular property of vortex shedding at this low Kc number. The 
fluctuation of flow variables appears where the vortex generated in this half cycle is 
convected away to the far field with the vorticity of large magnitude. This is due to 
the inadequate spatial resolution of the present method, since the grid spacing 
becomes coarser with the increase of distance from the cylinder. The vortex influen- 
ced by this fluctuation gradually comes back to the surface of the cylinder and dis- 
appears at N = 6500, which is one of the most noticeable point that differs from the 
experiment by Williamson illustrated in Fig. 11, in which the shed vortex does not 
come back to the cylinder but it shows more intimate pairing motion away from 
the cylinder. This difference is mostly attributable to the difference of both Kc and 
Re numbers and partly to the fluctuation of flow field due to the inadequate 
resolution of the computational method which dissipates the energy of the shed vor- 
tex that may interact with the vortex of the previous half cycle with opposite sign 
more intimately. 

The pressure distribution on the cylinder surface is shown in Fig. 18. The positive 
value exceeds 3 and the negative one -3, and the variation of distribution is very 
abrupt and complicated. It seems to be difficult to find similarity with the pressure 
distribution in steady motion. 

8.3. Kc=1 

Contour maps of vorticity are shown in Fig. 19 for the case of Kc = 7. The overall 
pattern of vortex shedding is similar to the case of Kc = 5. Unsymmetric vortex 
shedding does not yet appear, but the flow is completely symmetric in this 
simulation. However, the fluid motion is much more dynamic, since the amplitude 
of the oscillation is larger than the case of Kc = 5 by 40 percent. The vortex caused 
by the splitting up motion is moved upward and backward and shedded farther by 
the large amplitude of oscillation. Two pairs of shed vortices and two pairs of 
attached vortices are present after the velocity begins to decrease at N = 5000. The 
distance of shed vortices from the cylinder is farther in proportion to the Kc 
number and the shed vortex generated in the present half cycle does not come back 
to the body surface contrary to the case of Kc = 5. 
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FIG. 16. Contour map of vorticity a3 for the case of Kc = 5 and Re = 1000, the contour interval is 4 
and contours of clockwise rotation are drawn in bold lines, (a) N =4000, I = 1.000, V=O.OO; 
(b) N=4500, f= 1.125, V= -0.71. 
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FIG. 16 (cnntinurd). (c) N=5000, I= 1.250, V= - 1.00; (d) N= 5500, t = 1.375, V= -0.71 
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FIG. 16 (continued). (e) N=6000, t= 1.500, V=O.OO; (f) N=6500, I= 1.625, V=O.71. 
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FIG. 17. Detailed contour map of vorticity m’ for the case of Kc = 5 and Re = 1000, the contour 
interval is 4 and contours of clockwise rotation are drawn in bold lines, (a) N = 4000, t = 1.000, V = 0.00 
and N=4250, f-1.063, V= -0.38; (b) N=4500, r=1.125, V= -0.71 and N=4750, r=1.188 
V = - 0.92. 
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FIG. 18. Pressure distribution on body surface for the case of Kc = 5 and Re = IOOO, (a) N = 40(& 
1500, and 5000; (b) N = 5500, 6oo0, and 6500. 
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FIG. 19. Contour map of vorticity w3 for the case of Kc = 7 and Re = 700, the contour interval is 4 
and contours of clockwise rotation are drawn in bold lines, (a) N = 4000, f = 1.000, V=O.OQ; 
(b) N=4500, t= 1.125, V= -0.71. 



VORTEX GENERATION IN OSCILLATORY FLOW 393 

d 

FIG. 19 (con<inued). (c) N=5000, 1~1.250, V= -1.00; (d) N=5500, t=1.375, V= -0.71. 
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FIG. 19 (continued). (e) N=6000, t=1.500, V=O.OO; (f) N=6500, 1=1.625, V=O.71. 
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8.4. Discussion 

At relatively low Kc number the process from flow separation to vortex shedding 
is very complicated, since the vortices generated in the previous cycles are present 
near the cylinder and they are very influential to the succeeding flow separation. 
The present method of directly integrating the NS-equation with high degree of 
accuracy seems to be very useful for the elucidation of the details of the complicated 
flow mechanism, to which both experimental approaches with various instruments 
and numerical approaches with various postulations to simplify the problem, such 
as a discrete vortex modelling, will find serious diffkulties. 

The computations were performed by a super-computer HITAC S-810/20 of 
which top speed is about 650 MFLOPS. The CPU time required by the com- 
putation of 7000 time-steps was about 10 h by the scalar processor and about 4 h 
by the vector processor, since the number of iteration for the solution of (4.3) 
sometimes approaches 300 when the change of the flow field is abrupt. Although 
almost all parts of the computer code is vectorized, it seems to leave room for 
improvement. 

9. CONCLUDING REMARKS 

A higher-order accurate difference method for a viscous flow was developed. The 
simulated example of vortex shedding from a circular cylinder in an oscillatory flow 
at low Kc number elucidated the complicated vortex generation, separation and 
pairing motions. It seems to be demonstrated that the present method is a useful 
tool of numerical experiments to derive sound understanding of the detailed viscous 
flow mechanics. Since the formulation and the computer code are written in three 
dimensions and a general curvilinear coordinate system is employed, the present 
method is applicable to a variety of viscous flow problem. However, it is obvious 
that there are some important points left to be improved. The stability property of 
the present method requires a very fine grid system and gives a serious limitation 
on diffusion number, which leads to high cost of numerical experiments. A proper 
turbulence model must be introduced for the simulation of a higher Reynolds 
number flow. These must be considered in future. 
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